A novel manganese(III) acetate mediated reaction between 2-benzoyl-1,4-naphthoquinones and 1,3-dicarbonyl compounds

Chien-Yu Lin, Yu-Chih Cheng, An.-I. Tsai and Che-Ping Chuang*

Received 16th November 2005, Accepted 25th January 2006 First published as an Advance Article on the web 8th February 2006 DOI: 10.1039/b516285h

A manganese(III)-mediated reaction between 2-benzoyl-1,4-naphthoquinones and 1,3-dicarbonyl compounds is described. This reaction provides an effective method for the synthesis of naphtho[2,3-*c*]furan-4,9-diones and naphthacene-5,12-diones, and it shows fair to high chemoselectivity depending on the electronic effect of the benzoyl group substituent on the reactants. With ethyl benzoylacetate and 1,3-diketones, the novel naphtho[2,3-*c*]furan-4,9-diones were produced effectively with high selectivity.

Introduction

Carbon-carbon bond-forming reactions mediated by radicals have received considerable attention in organic synthesis during the last two decades.^{1,2} Compounds containing the quinone group represent an important class of biologically active molecules that are widespread in nature.3 Oxidative free-radical reaction mediated by metal salts has received considerable attention in organic synthesis for the construction of carbon-carbon bonds. Among these, manganese(III) acetate and cerium(IV) ammonium nitrate have been used most efficiently.^{2,4-6} The free-radical reaction of 1,4naphthoquinones has been reported.^{6,7} Previously, we found that the manganese(III) acetate mediated oxidative free-radical reaction of 2-benzyl-(3-ethoxycarbonylmethyl)-1,4-naphthoquinones produced naphthacene-5,12-diones effectively. In contrast, with 2benzoyl-(3-ethoxycarbonylmethyl)-1,4-naphthoquinones, in addition to the expected 6-hydroxynaphthacene-5,12-diones, the novel naphtho[2,3-c]furan-4,9-diones were also produced as the major products. This is presumably due to the electron deficiency of the benzoyl group, which disfavours the intramolecular cyclization of the electrophilic radical intermediate onto the C-C double bond of the benzoyl group.^{6g} These naphthacene-5,12-diones can also be generated directly from the intermolecular oxidative free-radical reaction of 2-benzyl-1,4-naphthoquinones with 1,3dicarbonyl compounds.^{6d} This report describes our results of the manganese(III) acetate mediated reactions between 2-benzoyl-1,4naphthoquinones and 1,3-dicarbonyl compounds.

Results and discussion

We first tried the manganese(III)-mediated reaction of 2-benzoyl-1,4-naphthoquinones **1** with β -ketoesters **2** (Scheme 1). When 2-benzoyl-1,4-naphthoquinone (**1a**) was treated with ethyl bu-tyrylacetate (**2a**, $\mathbb{R}^3 = {}^{n}\text{PrCO}$) and manganese(III) acetate in acetic acid at 70 °C, in addition to the expected naphthacene 5,12-dione **4a** (20%), the novel naphtho[2,3-*c*]furan-4,9-dione **3a** was also obtained in 46% yield (Table 1, entry 1). Although

Table 1	Reaction	with	β-ketoesters

Entry	Quinone	β-Ketoester	Products (yield (%))
1	1a : $R^1 = H, R^2 = H$	$2a: R^3 = {^n}PrCO$	3a (46), 4a (20)
2	1b : $R^1 = H$, $R^2 = Me$	2a : $R^3 = {}^n PrCO$	3b (41), 4b (22)
3	1c: $R^1 = H, R^2 = Br$	2a : $R^3 = {}^n PrCO$	3c (48), 4c (3)
4	1d : $R^1 = H, R^2 = Cl$	$2a: R^3 = {^nPrCO}$	3d (54), 4d (3)
5	1e: $R^1 = Me$, $R^2 = H$	2a : $R^3 = {}^n PrCO$	3e (51), 4e (15)
6	1f : $R^1 = Me, R^2 = Me$	2a : $R^3 = {}^n PrCO$	3f (53), 4f (16)
7	1g : $R^1 = Br$, $R^2 = H$	2a : $R^3 = {}^n PrCO$	3g (50), 4g (5)
8	1h : $R^1 = Cl, R^2 = H$	2a : $R^3 = {}^n PrCO$	3h (45), 4h (6)
9	1i : $R^1 = Cl, R^2 = Cl$	2a : $R^3 = {}^n PrCO$	3i (46), 4i (6)
10	1a : $R^1 = H, R^2 = H$	2b : $R^{3} = {}^{i}PrCO$	3a (50), 4a (12)
11	1b : $R^1 = H$, $R^2 = Cl$	2b : $R^{3} = {}^{i}PrCO$	3d (50), 4d (2)
12	1a : $R^1 = H, R^2 = H$	2c : $R^3 = PhCO$	3a (54), 4a (3)
13	1b : $R^1 = H$, $R^2 = Me$	2c : $R^3 = PhCO$	3b (48), 4b (3)
14	1c: $R^1 = H, R^2 = Br$	2c : $R^3 = PhCO$	3c (48), 4c (2)
15	1d : $R^1 = H, R^2 = Cl$	2c : $R^3 = PhCO$	3d (52), 4d (2)
16	1e: $R^1 = Me$, $R^2 = H$	2c : $R^3 = PhCO$	3e (68), 4e (6)
17	1f : $R^1 = Me$, $R^2 = Me$	2c : $R^3 = PhCO$	3f (65), 4f (5)
18	1g : $R^1 = Br$, $R^2 = H$	2c : $R^3 = PhCO$	3g (42), 4g (3)
19	$1\mathbf{\tilde{h}}: \mathbf{R}^1 = \mathbf{C}\mathbf{l}, \mathbf{R}^2 = \mathbf{H}$	2c : $R^3 = PhCO$	3h (45), 4h (5)
20	1i : $R^1 = Cl, R^2 = Cl$	$2\mathbf{c}: \mathbf{R}^3 = \mathrm{PhCO}$	3i (44), 4i (2)

the mechanistic details of this reaction are unclear, 3a and 4a may be formed by the reaction route presented in Scheme 1. Manganese(III) acetate oxidation of 2a produces radical 5a. This radical intermediate 5a undergoes intermolecular addition to the quinone ring followed by oxidation to give 6a,8 which was then oxidized by manganese(III) acetate to generate 7a. Radical 7a undergoes either a six-membered-ring free-radical cyclization and subsequent aromatization to give 8a, which undergoes a further retro-Claisen condensation to produce 4a (path a)⁹ or oxidation to give 9a (path b). This cation intermediate 9a undergoes a five-membered-ring cyclization followed by retro-Claisen condensation to generate 3a.¹⁰ Analogous results were obtained with other 2-benzoyl-1,4-naphthoquinones 1, and the results are summarized in Table 1 (entries 1-9). In all cases, naphtho[2,3-c]furan-4,9-dione 3 and naphthacene-5,12-dione 4 were obtained in fair yields. Contrary to the reactions of 2-benzyl-1,4-naphthoquinones with β -ketoesters,^{6d} **3** is the major product. It indicates that the electron deficiency of the benzoyl group disfavours the intramolecular cyclization of electrophilic radical 7 onto the C-C double bond of benzoyl group (path a). Interestingly,

Department of Chemistry, National Cheng Kung University, Tainan, Taiwan, 70101, Republic of China. E-mail: cpchuang@mail.ncku.edu.tw; Fax: +886-6-2740552

Scheme 1

the reaction of 1 bearing an additional electron-withdrawing halogeno group gave the corresponding products 3 and 4 with an excellent 3/4 ratio (entries 3, 4, 7–9). These results can be rationalized by considering that the electron deficiency of radical intermediate 7 makes the rate of six-membered-ring cyclization to the benzene ring bearing an electron-withdrawing halogeno group much slower (path a), making the competitive oxidation of 7 the major route (path b). The formation of naphtho[2,3-c]furan-4,9-diones is interesting, because they are one of the subsets of natural products containing a *c*-fused furan ring.^{3c} To improve the chemoselectivity, reaction of 2-benzoyl-1,4-naphthoquinone **1a** with other β -ketoesters was next investigated. Reaction of 2benzoyl-1,4 naphthoquinone 1a with ethyl isobutyrylacetate (2b, $\mathbf{R}^3 = {}^{i}\mathbf{PrCO}$ and manganese(III) acetate in acetic acid afforded **3a** and 4a in 50% and 12% yields, respectively (entry 10). The 3a/4a ratio rose to 54 : 3 when ethyl benzoylacetate (2c, $R^3 = PhCO$) was employed (entry 12). The selectivity of this reaction increases as the size of substituents (\mathbf{R}^3) increases. This can be attributed to the steric effect exerted by R^3 group – the cyclization of 7 (path a) is retarded by the larger R^3 group and the oxidation of 7 becomes the major route (path b). On the basis of this finding, by choosing ethyl benzoylacetate (2c) as the radical precursor, the generalities of this reaction were examined with a variety of 2-benzoyl-1,4-naphthoquinones 1. The results are summarized in Table 1 (entries 12-20). In all cases, 2-benzoyl-1,4-naphthoquinone 1 was converted to the corresponding product 3 with high selectivity.

Next, we investigated this manganese(III)-mediated reaction with ethyl hydrogen malonate (2d). Treatment of 2-benzoyl-1,4-

naphthoquinone (1a) with 2d and manganese(III) acetate under the above conditions led to the formation of 3a and 4a in 19% and 38% yields, respectively (Table 2, entry 1). These two products 3a and 4a were presumably generated by the decarboxylation of 8d and 10d, respectively. Compounds 8d and 10d were formed by a route similar to that for 8a and 10a (Scheme 1). The scope of this reaction is shown in Table 2 (entries 1-9). In contrast to the reaction between 2-benzoyl-1,4-naphthoquinones 1 and β ketoesters, this reaction is less selective, particularly for 2-benzoyl-1,4-naphthoquinones 1a and 1b, for which naphthacene-5,12diones 4a and 4b are the major products (entries 1 and 2). It can be rationalized that the radical intermediate 7d bearing a weaker electron-withdrawing CO₂H group is less electron-deficient, and this makes the intramolecular cyclization of 7d (path a) faster than that of 7a. Similar to the results shown above for ethyl butyrylacetate (2a), the presence of an additional electron-withdrawing halogeno group on the benzoyl group appears to increase the ratio of 3/4, producing naphtho[2,3-c]furan-4,9-dione 3 as the major product. In particular, naphtho[2,3-c]furan-4,9-diones 3g-i were produced with high selectivities from the corresponding quinone 1 bearing an *ortho*-halogeno group (entries 7–9).

We have continued to study this manganese(III) mediated reaction with 1,3-diketones 11 (Eq. 1). When 2-benzoyl-1,4-naphthoquinone 1a was treated with pentanedione (11a) and manganese(III) acetate, 12a and 13a were obtained in 41% and 8% yields, respectively (Table 3, entry 1). Other examples were also summarized in Table 3. In most cases, 2-benzoyl-1,4-naphthoquinone 1 was converted to the corresponding furan

 Table 2
 Reaction with ethyl hydrogen malonate

Entry	Quinone	Malonate	Products (yield (%))
1	1a : $R^1 = H$, $R^2 = H$	2d: $R^3 = CO_2H$	3a (19), 4a (38)
2	1b : $R^1 = H$, $R^2 = Me$	2d: $R^3 = CO_2H$	3b (12), 4b (39)
3	1c : $R^1 = H$, $R^2 = Br$	2d: $R^3 = CO_2H$	3c (26), 4c (16)
4	1d : $R^1 = H$, $R^2 = CI$	2d: $R^3 = CO_2H$	3d (32), 4d (16)
5	1e : $R^1 = M_2$, $R^2 = U$	2d: $R^3 = CO_2H$	3e (20) 4c (14)
5	16 : $R^{2} = Me, R^{2} = H$	2d : $R^{3} = CO_{2}H$	$\begin{array}{c} \textbf{36} (30), \textbf{4e} (14) \\ \textbf{3f} (34), \textbf{4f} (19) \\ \textbf{3g} (50), \textbf{4g} (5) \\ \textbf{3h} (51), \textbf{4h} (4) \\ \textbf{3i} (57), \textbf{4i} (2) \end{array}$
6	17 : $R^{1} = Me, R^{2} = Me$	2d : $R^{3} = CO_{2}H$	
7	17 : $R^{1} = Br, R^{2} = H$	2d : $R^{3} = CO_{2}H$	
8	17 : $R^{1} = Cl, R^{2} = H$	2d : $R^{3} = CO_{2}H$	
9	17 : $R^{1} = Cl, R^{2} = Cl$	2d : $R^{3} = CO_{2}H$	

Table 3 Reaction with 1,3-diketones

Entry	Quinone	1,3-Diketone	Products (yield (%))
1	1a: $R^1 = H, R^2 = H$	11a : $R^3 = MeCO$	12a (41), 13a (8)
2	1b : $R^1 = H, R^2 = Me$	11a: $R^{3} = MeCO$	12b (42), 13b (9)
3	1c : $R^1 = H, R^2 = Br$	11a : $R^{3} = MeCO$	12c (43)
4	1d : $R^1 = H, R^2 = Cl$	11a : $R^{3} = MeCO$	12d (47)
5	1e: $R^1 = Me$, $R^2 = H$	11a : $R^{3} = MeCO$	12e (40), 13c (9)
6	1f : $R^1 = Me$, $R^2 = Me$	11a : $R^{3} = MeCO$	12f (47), 13d (7)
7	1g : $R^1 = Br, R^2 = H$	11a : $R^{3} = MeCO$	12g (52)
8	1h : $R^1 = Cl, R^2 = H$	11a : $R^{3} = MeCO$	12h (56)
9	1i : $R^1 = Cl, R^2 = Cl$	11a : $R^{3} = MeCO$	12i (65)
10	1a : $R^1 = H, R^2 = H$	11b : $R^3 = {}^{i}PrCO$	12j (47)
11	1b : $R^1 = H$, $R^2 = Me$	11b : $R^3 = {}^{i}PrCO$	12k (38)
12	1c: $R^1 = H, R^2 = Br$	11b : $R^3 = {}^{i}PrCO$	12l (38)
13	1a : $R^1 = H$, $R^2 = H$	11c : $R^3 = PhCO$	12m (70)
14	1b : $R^1 = H, R^2 = Me$	11c : $R^3 = PhCO$	12n (71)
15	1c: $R^1 = H, R^2 = Br$	11c : $R^3 = PhCO$	120 (65)
16	1d : $R^1 = H, R^2 = Cl$	11c : $R^3 = PhCO$	12p (70)
17	1e: $R^1 = Me$, $R^2 = H$	11c : $R^3 = PhCO$	12q (74)
18	1f : $R^1 = Me$, $R^2 = Me$	11c : $R^3 = PhCO$	12r (70)
19	1g : $R^1 = Br, R^2 = H$	11a : $R^3 = PhCO$	12s (82)
20	$1\tilde{h}$: $R^{1} = Cl, R^{2} = H$	11a : $R^3 = PhCO$	12t (74)
21	1i : $R^1 = Cl, R^2 = Cl$	11a : $R^3 = PhCO$	12u (76)

product **12** in high selectivity. Again, the selectivity of this reaction increases as the size of 1,3-diketone increases.

Conclusions

1,4-Naphthquinone **6**, generated by the free-radical addition of radical intermediate **5** to the C–C double bond of the quinone ring, undergoes efficient manganese(III)-mediated cyclization reactions. This reaction provides a method for the synthesis of naphtho[2,3-c]furan-4,9-diones and naphthacene-5,12-diones

from readily available 2-benzoyl-1,4-naphthoquinones and 1,3dicarbonyl compounds. The product distributions are highly dependent on the 1,3-dicarbonyl compounds used and the electronic effect of the substituents on benzoyl groups. With ethyl benzoylacetate and 1,3-diketones, the novel naphtho[2,3-*c*]furan-4,9-diones were produced effectively in high selectivities.

Experimental

General considerations

Melting points are uncorrected. Infrared spectra were taken with a Hitachi 260-30 spectrometer. ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE-300, AMX-400 or AVANCE-500 spectrometer. Chemical shifts are reported in ppm relative to TMS as internal reference. Elemental analyses were performed with Heraeus CHN-Rapid Analyzer. Mass spectra were recorded on a Jeol JMS-SX 102 A mass spectrometer. Analytical thin-layer chromatography was performed with precoated silica gel 60 F-254 plates (0.25 mm thick) from EM Laboratories and visualized by UV. The reaction mixture was purified by column chromatography over silica gel (70–230 mesh) from EM Laboratories. The starting 2-benzoyl-1,4-naphthoquinones 1 were synthesized by the CAN oxidative demethylation¹¹ of the corresponding 2-benzoyl-1,4dimethoxynaphthalenes.¹² The spectral data of **3a–h** and **4a–f** have been reported.^{6g}

Typical experimental procedure for the reaction between 2-benzoyl-1,4-naphthoquinones and β -ketoesters

A mixture of 2-benzoyl-1,4-naphthoquinone (1a) (162 mg, 0.62 mmol), ethyl butyrylacetate (2a) (385 mg, 2.43 mmol) and manganese(III) acetate (654 g, 2.44 mmol) in acetic acid (10 cm³) was heated at 70 °C for 30 min. The reaction mixture was diluted with ethyl acetate (100 cm³), washed with saturated aqueous sodium bisulfite (50 cm³), water (3 × 50 cm³), aqueous saturated sodium bicarbonate (3 × 50 cm³), dried (Na₂SO₄), and concentrated *in vacuo*. The crude product was purified by column chromatography over silica gel (20 g) (eluting with 2 : 1 dichloromethane–hexane) followed by recrystallization (CHCl₃–hexane) to give 3a (98 mg, 46%) and 4a (42 mg, 20%).

Typical experimental procedure for the reaction between 2-benzoyl-1,4-naphthoquinones and ethyl hydrogen malonate

A mixture of 2-benzoyl-1,4-naphthoquinone (1a) (153 mg, 0.57 mmol), ethyl hydrogen malonate (2d) (307 mg, 2.32 mmol) and manganese(III) acetate (614 mg, 2.29 mmol) in acetic acid (10 cm³) was heated at 70 °C for 1 h, and more ethyl hydrogen malonate (2d) (153 mg, 1.15 mmol) and manganese(III) acetate (309 mg, 1.15 mmol) was then added. After being stirred for 1 h, the reaction mixture was worked up as described above and the crude product was purified by column chromatography over silica gel (20 g) (eluting with 2 : 1 dichloromethane–hexane) followed by recrystallization (CHCl₃–hexane) to give 3a (39 mg, 19%) and 4a (76 mg, 38%).

3-(2,4-Dichlorophenyl)-4,9-dioxo-4,9-dihydronaphtho[2,3-*c***]-furan-1-carboxylic acid ethyl ester 3i.** Yellow needles; mp 179–180 °C (from CHCl₃-hexane); (Found: C, 60.78; H, 2.96.

C₂₁H₁₂Cl₂O₅ requires C, 60.74; H, 2.91%); v_{max} (CHCl₃)/cm⁻¹ 3020, 1730, 1685, 1585 and 1285; δ_{H} (400 MHz; CDCl₃; Me₄Si) 1.49 (3 H, t, *J* 7.1, CH₃), 4.54 (2 H, q, *J* 7.1, OCH₂), 7.43 (1 H, dd, *J* 8.3 and 1.9, ArH), 7.60 (1 H, d, *J* 1.9, ArH), 7.65 (1 H, d, *J* 8.3, ArH), 7.77–7.85 (2 H, m, ArH), 8.20–8.26 (1 H, m, ArH) and 8.31–8.37 (1 H, m, ArH); δ_{C} (100.6 MHz; CDCl₃; Me₄Si) 14.2 (q), 62.6 (t), 120.9 (s), 124.7 (s), 125.6 (s), 127.11 (d), 127.16 (d), 128.0 (d), 130.2 (d), 133.0 (d), 134.2 (d), 134.4 (d), 134.6 (s), 135.5 (s), 135.6 (s), 138.0 (s), 144.0 (s), 154.5 (s), 157.2 (s), 177.5 (s) and 178.6 (s).

1-Bromo-12-hydroxy-6,11-dioxo-6,11-dihydronaphthacene-5carboxylic acid ethyl ester 4g. Orange crystals; mp 246–247 °C (from CHCl₃–hexane); v_{max} (CHCl₃)/cm⁻¹ 3420, 1715, 1670, 1560, 1250 cm⁻¹; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.49 (3 H, t, *J* 7.1, CH₃), 4.66 (2 H, q, *J* 7.1, OCH₂), 7.54 (1 H, t, *J* 7.8, ArH), 7.81–7.89 (3 H, m, ArH), 8.03 (1 H, d, *J* 7.8, ArH), 8.30–8.35 (1 H, m, ArH), 8.40–8.45 (1 H, m, ArH) and 16.05 (1 H, s, OH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; Me₄Si) 14.1 (q), 62.4 (t), 109.0 (s), 120.9 (s), 125.3 (s), 125.5 (s), 127.0 (d), 127.20 (d), 127.27 (s), 127.8 (d), 131.7 (d), 133.5 (s), 133.8 (s), 134.6 (d), 134.8 (d), 136.0 (s), 137.0 (d), 166.0 (s), 169.0 (s), 181.5 (s) and 187.8 (s); *m/z* (EI) 423.9950 (M⁺. C₂₁H₁₃BrO₅ requires 423.9946), 381 (100%), 379 (99), 354 (36), 352 (38), 346 (16), 325 (21) and 323 (19).

1-Chloro-12-hydroxy-6,11-dioxo-6,11-dihydronaphthacene-5carboxylic acid ethyl ester 4h. Orange crystals; mp 250–251 °C (from CHCl₃–hexane); ν_{max} (CHCl₃)/cm⁻¹ 2980, 1715, 1665, 1390, 1280 and 1250; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.49 (3 H, t, *J* 7.2, CH₃), 4.66 (2 H, q, *J* 7.2, OCH₂), 7.64 (1 H, t, *J* 8.0, ArH), 7.75 (1 H, d, *J* 8.0, ArH), 7.79 (1 H, d, *J* 8.0, ArH), 7.80–7.89 (2 H, m, ArH), 8.27–8.34 (1 H, m, ArH), 8.37–8.44 (1 H, m, ArH) and 16.01 (1 H, s, OH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; Me₄Si) 14.1 (q), 62.4 (t), 109.1 (s), 124.6 (s), 125.3 (s), 126.4 (d), 127.17 (d), 127.25 (s), 127.8 (d), 131.5 (d), 132.9 (d), 133.4 (s), 133.8 (s), 134.2 (s), 134.6 (d), 134.8 (d), 135.9 (s), 166.3 (s), 169.0 (s), 181.4 (s) and 187.8 (s); *m*/*z* (EI) 380.0453 (M⁺. C₂₁H₁₃ClO₅ requires 380.0452), 345 (16%), 335 (100), 308 (16), 223 (18) and 187 (26).

1,3-Dichloro-12-hydroxy-6,11-dioxo-6,11-dihydronaphthacene-5-carboxylic acid ethyl ester 4i. Orange crystals; mp 214–215 °C (from CHCl₃–hexane); ν_{max} (CHCl₃)/cm⁻¹ 3015, 1730, 1595, 1565 and 1250; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.49 (3 H, t, *J* 7.2, CH₃), 4.67 (2 H, q, *J* 7.2, OCH₂), 7.72 (1 H, d, *J* 2.0, ArH), 7.74 (1 H, d, *J* 2.0, ArH), 7.81–7.90 (2 H, m, ArH), 8.28–8.34 (1 H, m, ArH), 8.38–8.44 (1 H, m, ArH) and 15.96 (1 H, s, OH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; Me₄Si) 14.0 (q), 62.6 (t), 109.3 (s), 122.9 (s), 125.4 (d), 126.1 (s), 126.4 (s), 127.2 (d), 127.8 (d), 132.8 (d), 133.3 (s), 133.7 (s), 134.8 (d), 135.0 (d), 135.3 (s), m/z (EI) 414.0062 (M⁺. C₂₁H₁₂Cl₂O₅ requires 414.0062), 369 (62%), 344 (26), 335 (10), 315 (24) and 285 (100).

Typical experimental procedure for the reaction between 2-benzoyl-1,4-naphthoquinones and 1,3-diketones

A mixture of 2-benzoyl-1,4-naphthoquinone (1a) (162 mg, 0.62 mmol), 2,4-pentanedione (11a) (251 mg, 2.51 mmol) and manganese(III) acetate (664 mg, 2.48 mmol) in acetic acid (10 cm³) was heated at 70 °C for 30 min. After work-up as described above, the crude product was purified by column chromatography over silica gel (20 g) (eluting with 2 : 1 dichloromethane–hexane) followed by recrystallization (CHCl₃-hexane) to give 12a (80 mg, 41%) and 13a (16 mg, 8%).

1-Acetyl-4,9-dioxo-3-phenyl-4,9-dihydronaphtho[**2**,**3-***c*]**furan 12a.** Pale yellow needles; mp 159–160 °C (from CHCl₃–hexane); (Found: C, 75.82; H, 3.83. $C_{20}H_{12}O_4$ requires C, 75.94; H, 3.82%); v_{max} (CHCl₃)/cm⁻¹ 3010, 1675, 1530, 1490, 1390 and 1250; δ_{H} (400 MHz; CDCl₃; Me₄Si) 2.89 (3 H, s, CH₃), 7.49–7.58 (3 H, m, ArH), 7.74–7.84 (2 H, m, ArH), 8.24–8.33 (2 H, m, ArH) and 8.41–8.49 (2 H, m, ArH); δ_{C} (100.6 MHz; CDCl₃; Me₄Si) 29.5 (q), 118.3 (s), 124.7 (s), 127.4 (d), 127.5 (d), 128.6 (2 × d), 128.9 (2 × d), 132.0 (d), 134.0 (d), 134.4 (d), 134.8 (s), 135.1 (s), 148.9 (s), 158.7 (s), 178.9 (s), 179.2 (s) and 187.3 (s).

1-Acetyl-3-(4-methylphenyl)-4,9-dioxo-4,9-dihydronaphtho[2,3-c]furan 12b. Yellow needles; mp 183–184 °C (from CHCl₃– hexane); (Found: C, 76.08; H, 4.26. C₂₁H₁₄O₄ requires C, 76.35; H, 4.27%); ν_{max} (CHCl₃)/cm⁻¹ 3015, 1680, 1495, 1390, 1270 and 1250; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.45 (3 H, s, CH₃), 2.89 (3 H, s, CH₃), 7.34 (2 H, d, *J* 8.2, ArH), 7.75–7.84 (2 H, m, ArH), 8.26–8.34 (2 H, m, ArH) and 8.37 (2 H, d, *J* 8.2, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; Me₄Si) 21.8 (q), 29.5 (q), 117.9 (s), 124.75 (s), 124.82 (s), 127.44 (d), 127.52 (d), 128.9 (2 × d), 129.3 (2 × d), 134.0 (d), 134.4 (d), 134.8 (s), 135.2 (s), 142.9 (s), 148.6 (s), 159.2 (s), 178.9 (s), 179.3 (s) and 187.4 (s).

1-Acetyl-3-(4-bromophenyl)-4,9-dioxo-4,9-dihydronaphtho[**2**,3-*c*]**furan 12c.** Pale orange powder; mp 200–201 °C (from CHCl₃– hexane); (Found: C, 60.49; H, 2.81. C₂₀H₁₁BrO₄ requires C, 60.78; H, 2.81%); v_{max} (CHCl₃)/cm⁻¹ 2925, 1675, 1595, 1480 and 1265; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.91 (3 H, s, CH₃), 7.69 (2 H, d, *J* 8.7, ArH), 7.80–7.87 (2 H, m, ArH), 8.28–8.35 (2 H, m, ArH) and 8.39 (2 H, d, *J* 8.7, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; Me₄Si) 29.6 (q), 118.7 (s), 124.8 (s), 126.4 (s), 126.9 (s), 127.6 (d), 127.7 (d), 130.3 (2 × d), 132.0 (2 × d), 134.3 (d), 134.6 (d), 134.8 (s), 135.0 (s), 149.0 (s), 157.6 (s), 179.0 (s), 179.1 (s) and 187.4 (s).

1-Acetyl-3-(4-chlorophenyl)-4,9-dioxo-4,9-dihydronaphtho[**2,3-***c*]**furan 12d.** Yellow needles; mp 207–208 °C (from CHCl₃– hexane); (Found: C, 68.31; H, 3.22. C₂₀H₁₁ClO₄ requires C, 68.49; H, 3.16%); v_{max} (CHCl₃)/cm⁻¹ 3030, 1680, 1485, 1270 and 1250; δ_{H} (400 MHz; CDCl₃; Me₄Si) 2.90 (3 H, s, CH₃), 7.52 (2 H, d, *J* 8.6, ArH), 7.78–7.86 (2 H, m, ArH), 8.27–8.33 (2 H, m, ArH) and 8.46 (2 H, d, *J* 8.6, ArH); δ_{C} (100.6 MHz; CDCl₃; Me₄Si) 29.6 (q), 118.6 (s), 124.7 (s), 125.9 (s), 127.5 (d), 127.6 (d), 129.0 (2 × d), 130.2 (2 × d), 134.2 (d), 134.5 (d), 134.8 (s), 135.0 (s), 138.3 (s), 148.9 (s), 157.5 (s), 179.0 (s), 179.1 (s) and 187.3 (s).

1-Acetyl-3-(2-methylphenyl)-4,9-dioxo-4,9-dihydronaphtho[2,3-c]furan 12e. Pale yellow needles; mp 179–180 °C (from CHCl₃– hexane); (Found: C, 76.30; H, 4.27. C₂₁H₁₄O₄ requires C, 76.35; H, 4.27%); v_{max} (CHCl₃)/cm⁻¹ 3020, 1680, 1595, 1540, 1400 and 1250; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.41 (3 H, s, CH₃), 2.88 (3 H, s, CH₃), 7.31–7.39 (2 H, m, ArH), 7.47 (1 H, t, *J* 7.5, ArH), 7.68 (1 H, d, *J* 7.5, ArH), 7.76–7.86 (2 H, m, ArH), 8.21–8.28 (1 H, m, ArH) and 8.30–8.37 (1 H, m, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; Me₄Si) 20.3 (q), 29.4 (q), 119.6 (s), 123.8 (s), 125.6 (d), 127.11 (s), 127.18 (d), 127.8 (d), 130.8 (d), 130.9 (d), 131.3 (d), 134.2 (d), 134.4 (d), 134.8 (s), 135.3 (s), 138.5 (s), 149.5 (s), 159.7 (s), 178.8 (s), 179.1 (s) and 187.3 (s). **1-AcetyI-3-(2,4-dimethylphenyI)-4,9-dioxo-4,9-dihydronaphtho-[2,3-***c***]furan 12f.** Yellow needles; mp 204–205 °C (from CHCl₃– hexane); (Found: C, 76.68; H, 4.68. C₂₂H₁₆O₄ requires C, 76.73; H, 4.68%); v_{max} (CHCl₃)/cm⁻¹ 3010, 1680, 1595, 1540 and 1250; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.38 (3 H, s, CH₃), 2.42 (3 H, s, CH₃), 2.87 (3 H, s, CH₃), 7.16 (1 H, d, *J* 7.9, ArH), 7.18 (1 H, s, ArH), 7.60 (1 H, d, *J* 7.9, ArH), 7.76–7.85 (2 H, m, ArH), 8.22–8.28 (1 H, m, ArH) and 8.31–8.36 (1 H, m, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; Me₄Si) 20.3 (q), 21.5 (q), 29.4 (q), 119.3 (s), 123.9 (s), 124.2 (s), 126.4 (d), 127.2 (d), 127.8 (d), 130.9 (d), 131.6 (d), 134.1 (d), 134.4 (d), 134.9 (s), 135.4 (s), 138.4 (s), 141.8 (s), 149.3 (s), 160.1 (s), 178.8 (s), 179.2 (s) and 187.3 (s).

1-Acetyl-3-(2-bromophenyl)-4,9-dioxo-4,9-dihydronaphtho[**2**,3-*c*]-furan **12g**. Pale orange powder; mp 194–195 °C (from CHCl₃– hexane); (Found: C, 60.64; H, 2.78. C₂₀H₁₁BrO₄ requires C, 60.78; H, 2.81%); v_{max} (CHCl₃)/cm⁻¹ 3010, 1680, 1595, 1400 and 1250; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.89 (3 H, s, CH₃), 7.44 (1 H, td, *J* 7.4 and 1.6, ArH), 7.50 (1 H, td, *J* 7.4 and 1.6, ArH), 7.67 (1 H, dd, *J* 7.4 and 1.6, ArH), 7.76 (1 H, dd, *J* 7.4 and 1.6, ArH), 7.78–7.87 (2 H, m, ArH), 8.21–8.26 (1 H, m, ArH) and 8.32–8.37 (m, 1H, ArH); $\delta_{\rm C}$ (125.6 MHz; CDCl₃; Me₄Si) 29.3 (q), 120.4 (s), 123.5 (s), 127.1 (2 × d), 127.9 (d), 129.1 (s), 132.4 (2 × d), 133.4 (d), 134.31 (d), 134.37 (d), 134.6 (s), 135.5 (s), 149.8 (s), 157.0 (s), 178.61 (s), 178.66 (s) and 187.2 (s).

1-Acetyl-3-(2-chlorophenyl)-4,9-dioxo-4,9-dihydronaphtho[2,3-c]-furan 12h. Pale yellow needles; mp 236–237 °C (from CHCl₃– hexane); (Found: C, 68.37; H, 3.12. $C_{20}H_{11}ClO_4$ requires C, 68.49; H, 3.16%); v_{max} (CHCl₃)/cm⁻¹ 3030, 1685, 1580, 1540, 1400 and 1250; δ_{H} (400 MHz; CDCl₃; Me₄Si) 2.90 (3 H, s, CH₃), 7.45 (1 H, t, *J* 7.5, ArH), 7.48–7.61 (2 H, m, ArH), 7.71 (1 H, d, *J* 7.5, ArH), 7.76–7.87 (2 H, m, ArH), 8.25 (1 H, dd, *J* 6.5 and 1.8, ArH) and 8.35 (1 H, dd, *J* 6.5 and 1.8, ArH); δ_{C} (100.6 MHz; CDCl₃; Me₄Si) 29.3 (q), 120.6 (s), 123.6 (s), 126.6 (d), 127.0 (s), 127.2 (d), 132.4 (d), 134.33 (d), 134.42 (d), 134.44 (s), 134.6 (s), 135.4 (s), 149.9 (s), 155.9 (s), 178.6 (s), 178.7 (s) and 187.3 (s).

1-Acetyl-3-(2,4-dichlorophenyl)-4,9-dioxo-4,9-dihydronaphtho-[2,3-*c***]furan 12i.** Yellow needles; mp 191–192 °C (from CHCl₃– hexane); (Found: C, 62.26; H, 2.56. C₂₀H₁₀Cl₂O₄ requires C, 62.36; H, 2.62%); ν_{max} (CHCl₃)/cm⁻¹ 3020, 1685, 1470, 1410, 1250; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.89 (3 H, s, CH₃), 7.44 (1 H, dd, J 8.5 and 1.6, ArH), 7.60 (1 H, d, J 1.6, ArH), 7.67 (1 H, d, J 8.5, ArH), 7.77–7.89 (2 H, m, ArH), 8.24 (1H, dd, J 7.2 and 2.2, ArH) and 8.35 (1 H, dd, J 7.2 and 2.2, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; Me₄Si) 29.4 (q), 120.9 (s), 123.6 (s), 125.5 (s), 127.14 (d), 127.19 (d), 128.0 (d), 130.3 (d), 133.1 (d), 134.46 (d), 134.48 (d), 135.34 (s), 135.36 (s), 138.1 (s), 150.1 (s), 154.7 (s), 178.6 (2 × s) and 187.2 (s).

1-IsobutyryI-3-phenyI-4,9-dioxo-4,9-dihydronaphtho[**2,3-***c*]**furan 12j.** Orange needles; mp 156–157 °C (from CHCl₃–hexane); (Found: C, 76.66; H, 4.67. $C_{22}H_{16}O_4$ requires C, 76.73; H, 4.68%); ν_{max} (CHCl₃)/cm⁻¹ 2980, 1660, 1530, 1485 and 1315; δ_{H} (300 MHz; CDCl₃; Me₄Si) 1.31 (6 H, d, *J* 6.8, 2 × CH₃), 3.98 (1 H, septet, *J* 6.8, CH), 7.53–7.61 (3 H, m, ArH), 7.78–7.86 (2 H, m, ArH), 8.29– 8.37 (2 H, m, ArH) and 8.43–8.51 (2 H, m, ArH); δ_c (125.7 MHz; CDCl₃; Me₄Si) 18.4 (2 × q), 38.3 (d), 118.3 (s), 124.6 (s), 127.4 (d), 127.6 (d), 128.6 (2 × d), 128.8 (2 × d), 131.9 (d), 134.1 (d), 134.3 (d), 135.0 (s), 135.1 (s), 149.0 (s), 158.6 (s), 179.1 (2 × s) and 194.5 (s). **1-Isobutyryl-3-(4-methylphenyl)-4,9-dioxo-4,9-dihydronaphtho-[2,3-c]furan 12k.** Orange needles; mp 140–141 °C (from CHCl₃– hexane); (Found: C, 77.15; H, 5.09. $C_{23}H_{18}O_4$ requires 77.08; H, 5.06); ν_{max} (CHCl₃)/cm⁻¹ 2980, 1660, 1540, 1495 and 1315; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.30 (6 H, d, J 6.8, 2 × CH₃), 2.46 (3 H, s, CH₃), 3.97 (1 H, septet, J 6.8, CH), 7.36 (2 H, d, J 8.1, ArH), 7.74–7.86 (2 H, m, ArH), 8.27–8.35 (2 H, m, ArH) and 8.38 (2 H, d, J 8.1, ArH); $\delta_{\rm C}$ (75.5 MHz; CDCl₃; Me₄Si) 18.5 (2 × q), 21.7 (q), 38.3 (d), 117.9 (s), 124.6 (s), 124.9 (s), 127.4 (d), 127.6(d), 128.8 (2 × d), 129.4 (2 × d), 134.0 (d), 134.3 (d), 135.0 (s), 135.2 (s), 142.7 (s), 148.6 (s), 159.0 (s), 179.1 (s), 179.2 (s) and 194.5 (s).

1-(4-bromophenyl)-3-isobutyryl-4,9-dioxo-4,9-dihydronaphtho-[2,3-c]furan 12l. Orange needles; mp 177–178 °C (from CHCl₃– hexane); (Found: C, 62.40; H, 3.59. C₂₂H₁₅BrO₄ requires C, 62.43; H, 3.57); ν_{max} (CHCl₃)/cm⁻¹ 1660, 1595, 1480 and 1385; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.30 (6 H, d, *J* 6.8, 2 × CH₃), 3.99 (1 H, septet, *J* 6.8, CH), 7.69 (2 H, d, *J* 8.4, ArH), 7.77–7.88 (2 H, m, ArH), 8.28–8.34 (2 H, m, ArH) and 8.39 (2 H, d, *J* 8.4, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; Me₄Si) 18.4 (2 × q), 38.4 (d), 118.7 (s), 124.5 (s), 126.5 (s), 126.7 (s), 127.5 (d), 127.7 (d), 130.2 (2 × d), 132.0 (2 × d), 134.2 (d), 134.5 (d), 134.9 (s), 135.0 (s), 149.1 (s), 157.4 (s), 179.0 (s), 179.1 (s) and 194.6 (s).

1-Benzoyl-3-phenyl-4,9-dioxo-4,9-dihydronaphtho[**2,3-***c*]**furan 12m.** Yellow needles; mp 196–197 °C (from CHCl₃–hexane); (Found: C, 79.08; H, 3.71. C₂₅H₁₄O₄ requires C, 79.36; H, 3.73%); v_{max} (CHCl₃)/cm⁻¹ 3015, 1675, 1595, 1270 and 1250; δ_{H} (400 MHz; CDCl₃; Me₄Si) 7.47–7.58 (5 H, m, ArH), 7.68 (1 H, t, *J* 7.6, ArH), 7.77 (1 H, td, *J* 7.4 and 1.3, ArH), 7.82 (1 H, td, *J* 7.4 and 1.3, ArH), 8.01 (2 H, d, *J* 7.6, ArH), 8.22 (1 H, d, *J* 7.4, ArH), 8.36 (1 H, d, *J* 7.4, ArH) and 8.42–8.52 (2 H, m, ArH); δ_{C} (100.6 MHz; CDCl₃; Me₄Si) 117.7 (s), 125.1 (s), 127.4 (d), 127.7 (d), 128.6 (2 × d), 128.7 (4 × d), 129.9 (2 × d), 131.8 (d), 134.0 (d), 134.2 (d), 134.3 (d), 134.7 (s), 135.6 (s), 136.1 (s), 149.4 (s), 158.5 (s), 178.5 (s), 179.0 (s) and 184.0 (s).

1-Benzoyl-3-(4-methylphenyl)-4,9-dioxo-4,9-dihydronaphtho-[2,3-c]furan 12n. Yellow needles; mp 225–226 °C (from CHCl₃– hexane); (Found: C, 79.52; H, 4.19. C₂₆H₁₆O₄ requires C, 79.58; H, 4.11%); v_{max} (CHCl₃)/cm⁻¹ 3015, 1680, 1595, 1500 and 1270; $\delta_{\rm H}$ (400 MHz, CDCl₃; Me₄Si) 2.45 (3 H, s, CH₃), 7.35 (2 H, d, J 8.2, ArH), 7.53 (2 H, t, J 7.6, ArH), 7.68 (1 H, t, J 7.6, ArH), 7.76 (1 H, t, J 7.4, ArH), 7.81 (1 H, t, J 7.4, ArH), 8.01 (2 H, d, J 7.6, ArH), 8.21 (1 H, d, J 7.4, ArH), 8.36 (1 H, d, J 7.4, ArH) and 8.40 (2 H, d, J 8.2, ArH); $\delta_{\rm C}$ (100.6 MHz, CDCl₃; Me₄Si) 21.7 (q), 117.2 (s), 125.0 (s), 125.2 (s), 127.4 (d), 127.6 (d), 128.6 (2 × d), 128.7 (2 × d), 129.4(2 × d), 129.9 (2 × d), 133.9 (d), 134.1 (d), 134.3 (d), 134.8 (s), 135.7 (s), 136.2 (s), 142.6 (s), 149.1 (s), 159.0 (s), 178.6 (s), 179.0 (s) and 184.0 (s).

1-Benzoyl-3-(4-bromophenyl)-4,9-dioxo-4,9-dihydronaphtho-[2,3-c]furan 120. Yellow powder; mp 215–216 °C (from CHCl₃– hexane); (Found: C, 65.55; H, 2.81. C₂₅H₁₃BrO₄ requires C, 65.66; H, 2.87%); v_{max} (CHCl₃)/cm⁻¹ 3015, 1675, 1595, 1270 and 1250; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 7.54 (2 H, t, *J* 7.7, ArH), 7.64–7.71 (3 H, m, ArH), 7.74–7.85 (2 H, m, ArH), 7.99 (2 H, d, *J* 7.7, ArH), 8.21 (1 H, d, *J* 7.6, ArH), 8.35 (1 H, d, *J* 7.6, ArH) and 8.40 (2 H, d, *J* 8.2, ArH); $\delta_{\rm C}$ (125.6 MHz; CDCl₃; Me₄Si) 118.0 (s), 125.1 (s), 126.6 (2 × s), 127.5 (d), 127.7 (d), 128.7 (2 × d), 129.87 (2 × d), 129.93 (2 × d), 132.0 (2 × d), 134.1 (d), 134.3 (d), 134.4 (d), 134.7 (s), 135.5 (s), 136.0 (s), 149.5 (s), 157.3 (s), 178.4 (s), 179.0 (s) and 183.9 (s).

1-Benzoyl-3-(4-chlorophenyl)-4,9-dioxo-4,9-dihydr naphtho[**2**,**3-***c*]**furan 12p.** Yellow needles; mp 208–209 °C (from CHCl₃– hexane); (Found: C, 72.71; H, 3.27. C₂₅H₁₃ClO₄ requires C, 72.74; H, 3.17%); ν_{max} (CHCl₃)/cm⁻¹ 3015, 1680, 1595, 1490, 1270 and 1250; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 7.50 (2 H, d, *J* 8.7, ArH), 7.54 (2 H, t, *J* 7.6, ArH), 7.69 (1 H, t, *J* 7.6, ArH), 7.76 (1 H, t, *J* 7.4, ArH), 7.81 (1 H, t, *J* 7.4, ArH), 8.00 (2 H, d, *J* 7.6, ArH), 8.20 (1 H, d, *J* 7.4, ArH), 8.34 (1 H, d, *J* 7.4, ArH) and 8.47 (2 H, d, *J* 8.7, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; Me₄Si) 117.9 (s), 125.0 (s), 126.1 (s), 127.4 (d), 127.7 (d), 128.7 (2 × d), 129.0 (2 × d), 129.81 (2 × d), 129.85 (2 × d), 134.1 (d), 134.3 (d), 134.4 (d), 134.6 (s), 135.4 (s), 136.0 (s), 138.0 (s), 149.4 (s), 157.3 (s), 178.4 (s), 179.0 (s) and 183.9 (s).

1-Benzoyl-3-(2-methylphenyl)-4,9-dioxo-4,9-dihydronaphtho-[2,3-c]furan 12q. Yellow crystals; mp 175–176 °C (from CHCl₃– hexane); (Found: C, 79.50; H, 4.15. C₂₆H₁₆O₄ requires C, 79.58; H, 4.11%); ν_{max} (CHCl₃)/cm⁻¹ 3035, 1675, 1590, 1270 and 1250; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.42 (3 H, s, CH₃), 7.34 (1 H, t, *J* 6.5, ArH), 7.35 (1 H, d, *J* 6.5, ArH), 7.45 (1 H, t, *J* 7.6, ArH), 7.51 (2 H, t, *J* 7.6, ArH), 7.65 (1 H, td, *J* 6.5 and 1.0, ArH), 7.70–7.79 (3 H, m, ArH), 7.99 (2 H, dd, *J* 7.6 and 1.1, ArH) and 8.19–8.28 (2 H, m, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; Me₄Si) 20.4 (q), 118.8 (s), 124.2 (s), 125.5 (d), 127.1 (s), 127.2 (d), 127.5 (d), 128.5 (2 × d), 129.8 (2 × d), 130.7 (d), 130.9 (d), 131.2 (d), 133.98 (d), 134.02 (d), 134.2 (d), 135.09 (s), 135.11 (s), 136.0 (s), 138.4 (s), 149.9 (s), 159.2 (s), 178.3 (s), 178.7 (s) and 183.8 (s).

1-Benzoyl-3-(2,4-dimethylphenyl)-4,9-dioxo-4,9-dihydronaphtho-[2,3-*c***]furan 12r.** Yellow crystals; mp 167–168 °C (from CHCl₃– hexane); (Found: C, 79.67; H, 4.52. C₂₇H₁₈O₄ requires C, 79.79; H, 4.46%); v_{max} (CHCl₃)/cm⁻¹ 3015, 1660, 1585, 1490 and 1270; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.39 (3 H, s, CH₃), 2.41 (3 H, s, CH₃), 7.165 (1 H, d, *J* 6.2, ArH), 7.173 (1 H, s, ArH), 7.51 (2 H, t, *J* 7.8, ArH), 7.60–7.69 (2 H, m, ArH), 7.71–7.81 (2 H, m, ArH), 8.00 (2 H, dd, *J* 7.8 and 1.1, ArH) and 8.20–8.29 (2 H, m, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; Me₄Si) 20.4 (q), 21.5 (q), 118.6 (s), 124.3 (s), 124.4 (s), 126.4 (d), 127.3 (d), 127.6 (d), 128.6 (2 × d), 129.9 (2 × d), 131.0 (d), 131.6 (d), 133.97 (d), 134.03 (d), 134.2 (d), 135.2 (s), 135.3 (s), 136.1 (s), 138.3 (s), 141.7 (s), 149.7 (s), 159.7 (s), 178.4 (s), 178.8 (s) and 183.9 (s).

1-Benzoyl-3-(2-bromophenyl)-4,9-dioxo-4,9-dihydronaphtho-[2,3-c]furan 12s. Yellow crystals; mp 208–209 °C; (from CHCl₃– hexane); (Found: C, 65.60; H, 2.81. C₂₅H₁₃BrO₄ requires C, 65.66; H, 2.87%); v_{max} (CHCl₃)/cm⁻¹ 3015, 1680, 1600, 1270 and 1250; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 7.43 (1 H, td, *J* 7.6 and 1.6, ArH), 7.29–7.51 (3 H, m, ArH), 7.67 (1 H, t, *J* 7.3, ArH), 7.69 (1 H, dd, *J* 7.6 and 1.6, ArH), 7.54–7.77 (3 H, m, ArH), 8.05 (2 H, d, *J* 7.3, ArH) and 8.20–8.31 (2 H, m, ArH); $\delta_{\rm c}$ (100.6 MHz; CDCl₃; Me₄Si) 119.8 (s), 123.4 (s), 124.1 (s), 127.21 (d), 127.26 (d), 127.8 (d), 128.6 (2 × d), 129.2 (s), 130.0 (2 × d), 132.4 (d), 132.6 (d), 133.4 (d), 134.18 (d), 134.24 (2 × d), 135.0 (s), 135.3 (s), 135.8 (s), 150.4 (s), 156.5 (s), 178.0 (s), 178.7 (s) and 183.5 (s).

1-Benzoyl-3-(2-chlorophenyl)-4,9-dioxo-4,9-dihydronaphtho-[2,3-c]furan 12t. Yellow crystals; mp 201–202 °C (from CHCl₃– hexane); (Found: C, 72.70; H, 3.13. $C_{25}H_{13}ClO_4$ requires C, 72.74; H, 3.17%); v_{max} (CHCl₃)/cm⁻¹ 3015, 1680, 1595, 1270 and 1250; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 7.44 (1 H, td, *J* 7.6 and 1.4, ArH), 7.47–7.60 (4 H, m, ArH), 7.67 (1 H, t, *J* 7.6, ArH), 7.75 (1 H, dd, *J* 7.6 and 1.4, ArH), 7.76–7.83 (2 H, m, ArH), 8.04 (2 H, dd, *J* 7.6 and 1.4, ArH) and 8.21–8.30 (2 H, m, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; Me₄Si) 120.0 (s), 124.2 (s), 126.6 (d), 127.1 (s), 127.3 (d), 127.8 (d), 128.6 (2 × d), 130.0 (2 × d), 130.3 (d), 132.3 (d), 132.5 (d), 134.19 (d), 134.21 (d), 134.25 (d), 134.31 (s), 135.0 (s), 135.3 (s), 135.8 (s), 150.6 (s), 155.4 (s), 178.1 (s), 178.7 (s) and 183.5 (s).

1-Benzoyl-3-(2,4-dichlorophenyl)-4,9-dihydro-4,9-dioxonaphtho-[2,3-*c***]furan 12u.** Yellow crystals; mp 179–180 °C (from CHCl₃– hexane); (Found: C, 66.98; H, 2.63. C₂₅H₁₂Cl₂O₄ requires C, 67.13; H, 2.70%); v_{max} (CHCl₃)/cm⁻¹ 3015, 1680, 1585, 1270 and 1250; δ_{H} (400 MHz; CDCl₃; Me₄Si) 7.43 (1 H, dd, *J* 8.4 and 2.1, ArH), 7.53 (2 H, t, *J* 7.7, ArH), 7.59 (1 H, d, *J* 2.1, ArH), 7.68 (1 H, t, *J* 7.7, ArH), 7.71 (1 H, d, *J* 8.4, ArH), 7.73–7.83 (2 H, m, ArH), 8.02 (2 H, d, *J* 7.7, ArH) and 8.21–8.28 (2 H, m, ArH); δ_{C} (100.6 MHz; CDCl₃; Me₄Si) 120.2 (s), 124.1 (s), 125.5 (s), 127.2 (d), 127.3 (d), 127.8 (d), 128.7 (2 × d), 130.0 (2 × d), 130.3 (d), 133.3 (d), 134.30 (d), 134.34 (2 × d), 134.9 (s), 135.2 (s), 135.3 (s), 135.8 (s), 138.0 (s), 150.7 (s), 154.2 (s), 177.9 (s), 178.7 (s) and 183.5 (s).

6-Acetyl-11-hydroxy-5,12-dioxo-5,12-dihydronaphthacene 13a. Orange needles; mp 249–250 °C (from CHCl₃–hexane); (Found: C, 75.79; H, 3.77. C₂₀H₁₂O₄ requires C, 75.94; H, 3.82%); ν_{max} (CHCl₃)/cm⁻¹ 3010, 1670, 1595, 1430, 1295 and 1260; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.70 (3 H, s, CH₃), 7.71–7.89 (5 H, m, ArH), 8.27–8.34 (1 H, m, ArH), 8.35–8.43 (1 H, m, ArH), 8.61 (1 H, dd, *J* 7.1 and 1.7, ArH) and 14.82 (1 H, s, OH); $\delta_{\rm C}$ (75.5 MHz; CDCl₃; Me₄Si) 31.9 (q), 108.4 (s), 124.1 (s), 125.3 (d), 126.8 (d), 127.1 (d), 127.8 (d), 129.4 (d), 132.0 (d), 132.4 (s), 133.6 (s), 133.9 (s), 134.6 (d), 134.7 (d), 136.5 (s), 164.0 (s), 182.7 (s), 187.9 (s) and 205.2 (s).

6-Acetyl-11-hydroxy-8-methyl-5,12-dioxo-5,12-dihydronaphthacene 13b. Orange needles; mp 294–295 °C (from CHCl₃–hexane); (Found: C, 76.23; H, 4.27. C₂₁H₁₄O₄ requires C, 76.35; H, 4.27%) ν_{max} (KBr)/cm⁻¹ 3405, 2915, 1700, 1660, 1590 and 1255; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.56 (3 H, s, CH₃), 2.69 (3 H, s, CH₃), 7.54–7.59 (2 H, m, ArH), 7.79–7.88 (2 H, m, ArH), 8.28– 8.33 (1 H, m, ArH), 8.36–8.41 (1 H, m, ArH), 8.49 (1 H, d, *J* 8.9, ArH) and 14.81 (1 H, s, OH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; Me₄Si) 22.2 (q), 32.0 (q), 107.9 (s), 125.2 (d), 125.8 (s), 126.1 (d), 127.0 (d), 127.8 (d), 131.4 (d), 132.7 (s), 133.7 (s), 133.9 (s), 134.55 (d), 134.59 (d), 136.1 (s), 143.1 (s), 164.1 (s), 182.8 (s), 187.7 (s) and 205.6 (s).

11-Acetyl-6-hydroxy-7-methyl-5,12-dioxo-5,12-dihydronaphthacene 13c. Orange needles; mp 233–234 °C (from CHCl₃– hexane); (Found: C, 76.35; H, 4.25.C₂₁H₁₄O₄ requires C, 76.35; H, 4.27); ν_{max} (CHCl₃)/cm⁻¹ 3395, 2930, 1700, 1670, 1595 and 1580; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.68 (3 H, s, CH₃), 3.05 (3 H, s, CH₃), 7.43–7.50 (1 H, m, ArH), 7.57–7.65 (2 H, m, ArH), 7.77–7.87 (2 H, m, ArH), 8.28 (1 H, dd, *J* 7.0 and 1.7, ArH), 8.39 (1 H, dd, *J* 7.3 and 1.7, ArH) and 15.83 (1 H, s, OH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃; Me₄Si) 25.3 (q), 31.9 (q), 108.5 (s), 123.7 (s), 125.2 (d), 127.0 (d), 127.2 (s), 127.6 (d), 131.6 (d), 132.8 (d), 133.7 (s), 133.8 (s), 134.1 (s), 134.49 (d), 134.54 (d), 137.0 (s), 140.9 (s), 168.3 (s), 182.6 (s), 187.6 (s) and 205.8 (s).

11-Acetyl-6-hydroxy-7,9-dimethyl-5,12-dioxo-5,12-dihydronaphthacene 13d. Orange needles; mp 276–277 °C (from CHCl₃–hexane); v_{max} (CHCl₃)/cm⁻¹ 3425, 2925, 1695, 1595, 1580 and 1270; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.48 (3 H, s, CH₃), 2.67 (3 H, s, CH₃), 3.01 (3 H, s, CH₃), 7.31 (1 H, s, ArH), 7.39 (1 H, s, ArH), 7.76–7.87 (2 H, m, ArH), 8.28 (1 H, dd, *J* 7.5 and 1.6, ArH), 8.39 (1 H, dd, *J* 7.5 and 1.6, ArH), 8.39 (1 H, dd, *J* 7.5 and 1.6, ArH) and 15.83 (1 H, s, OH); $\delta_{\rm c}$ (100.6 MHz; CDCl₃; Me₄Si) 21.9 (q), 25.1 (q), 32.0 (q), 108.1 (s), 123.8 (s), 124.7 (d), 125.1 (s), 127.0 (d), 127.6 (d), 133.7 (s), 133.9 (s), 134.3 (d), 134.45 (s), 134.49 (d), 134.8 (d), 136.6 (s), 140.6 (s), 142.5 (s), 168.3 (s), 182.7 (s), 187.3 (s) and 206.1 (s); *m/z* (EI) 344.1053 (M⁺. C₂₂H₁₆O₄ requires 344.1048), 329 (100%), 318 (4), 245 (5), 215 (16) and 202 (18).

Acknowledgements

We are grateful to the National Science Council of the ROC for financial support (Grant No. NSC-93-2113-M-006-004).

References

- (a) W. P. Neumann, Synthesis, 1987, 665–682; (b) D. P. Curran, Synthesis, 1988, 417–439 and 489-513; (c) B. Giese, B. Kopping, T. Gobel, J. Dickhaut, G. Thoma, K. J. Kulicke and F. Trach, in Organic Reactions, John Wiley & Sons, New York, 1996, vol. 48, ch. 2, pp. 301–855; (d) W. R. Bowman, C. F. Bridge and P. Brookes, J. Chem. Soc., Perkin Trans. 1, 2000, 1–14; (e) W. Zheng, Tetrahedron, 2001, 57, 7237–7262.
- 2 (a) G. G. Melikyan, Synthesis, 1993, 833–850; (b) J. Iqbal, B. Bhatia and N. K. Nayyar, Chem. Rev., 1994, 94, 519–564; (c) B. B. Snider, Chem. Rev., 1996, 96, 339–363; (d) V. Nair, S. B. Panicker, L. G. Nair, T. G. George and A. Augustine, Synlett, 2003, 156–165; (e) V. Nair, L. Balagopal, R. Rajan and J. Mathew, Acc. Chem. Res., 2004, 37, 21–30.
- 3 (a) H. Ulrich and R. Richter, in Methods of Organic Chemistry (Houben-Weyl), ed. E. Muller, Georg Thieme Verlag, Stuttgart, Germany, 1977, vol. VII/3a, part 1; (b) The Chemistry of Functional Groups: The Chemistry of The Quinoid Compounds, ed. S. Patai and Z. Rappoport, Wiley, New York, 1988; (c) R. H. Thomson, Naturally Occurring Quinones IV: Recent Advances, Chapman and Hall, London, 1997; (d) M. J. Piggott, Tetrahedron, 2005, **61**, 9929– 9954.
- 4 (a) H. Oumar-Mahamat, C. Moustrou, J.-M. Surzur and M. P. Berstrand, J. Org. Chem., 1989, 54, 5684–5688; (b) B. B. Snider, B. Y. F.

Wan, B. O. Buckman and B. M. Foxman, J. Org. Chem., 1991, 56, 328-334.

- 5 (a) A. Citterio, R. Sebastiano and A. Marion, J. Org. Chem., 1991, 56, 5328–5335; (b) A. Citterio, R. Sebastiano and M. Nicolini, *Tetrahedron*, 1993, 49, 7743–7760; (c) Y.-L. Wu, C.-P. Chuang and P.-Y. Lin, *Tetrahedron*, 2000, 56, 6209–6217; (d) Y.-J. Liao, Y.-L. Wu and C.-P. Chuang, *Tetrahedron*, 2003, 59, 3511–3520; (e) Y.-L. Wu and C.-P. Chuang, *Tetrahedron*, 2004, 60, 1841–1847.
- 6 (a) M.-C. Jiang and C.-P. Chuang, J. Org. Chem., 2000, 65, 5409–5412;
 (b) Y.-L. Wu and C.-P. Chuang, Tetrahedron Lett., 2001, 42, 1717–1719;
 (c) Y.-L. Wu, C.-P. Chuang and P.-Y. Lin, Tetrahedron, 2001, 57, 5543–5549;
 (d) A.-I. Tsai, Y.-L. Wu and C.-P. Chuang, Tetrahedron, 2001, 57, 7829–7837;
 (e) C.-C. Tseng, Y.-L. Wu and C.-P. Chuang, Tetrahedron, 2002, 58, 7625–7633;
 (f) C.-M. Tseng, Y.-L. Wu and C.-P. Chuang, Tetrahedron, 2004, 60, 12249–12260;
 (g) H.-L. Chen, C.-Y. Lin, Y.-C. Cheng, A.-I. Tsai and C.-P. Chuang, Synthesis, 2005, 977–985.
- 7 (a) N. Jacobsen and K. Torsell, Acta Chem. Scand., 1973, 27, 3211–3216; (b) P. M. Brown and R. H. Thomson, J. Chem. Soc., Perkin Trans. I, 1976, 997–1000; (c) A. Citterio, A. Arnoldi and F. Minisci, J. Org. Chem., 1979, 44, 2674; (d) A. Citterio, E. Vismara and R. Bernardi, J. Chem. Res., Synop., 1983, 88–89; (e) G. A. Kraus and A. Melekhov, Tetrahedron Lett., 1998, 39, 3957–3960; (f) D. R. Williams and M. P. Clark, Tetrahedron Lett., 1998, 39, 7629–7632; (g) T. Ling, E. Poupon, E. J. Rueden, S. H. Kim and E. A. Theodorakis, J. Am. Chem. Soc., 2002, 124, 12261–12267.
- 8 Considering the electron-withdrawing effect of the benzoyl group, 6a may also be produced by the nucleophilic addition of ethyl butyrylacetate (2a) to the quinone ring of 1a followed by manganese(III) acetate oxidation.
- 9 Similar retro-Claisen condensation reactions have been reported. See: (a) E. F. Pratt, R. G. Rice and R. W. Luckenbaugh, *J. Am. Chem. Soc.*, 1957, **79**, 1212–1217; (b) A. Citterio, M. Fochi, A. Marion, A. Mele, R. Sebastiano and M. Delcanale, *Heterocycles*, 1998, **48**, 1993–2002. See also ref. 6a,d,f.
- 10 The formation of dihydrofurans by oxidative cycloaddition of 1,3-dicarbonyl compounds to alkenes mediated by metal salts has been reported. See: (a) E. I. Heiba and R. M. Dessau, J. Org. Chem., 1974, **39**, 3456–3457; (b) E. Baciocchi and R. Ruzziconi, Synth. Commun., 1988, **18**, 1841–1846; (c) V. Nair, J. Mathew and K. V. Radhakrishnan, J. Chem. Soc., Perkin Trans. 1, 1996, 1487–1492; (d) V. Nair, J. Mathew and L. G. Nair, Synth. Commun., 1996, **26**, 4531–4538; (e) S. C. Roy and P. K. Mandal, Tetrahedron, 1996, **52**, 2193–2198; (f) Y. R. Lee, B. S. Kim and D. H. Kim, Tetrahedron, 2000, **56**, 8845–8853; (g) Y. Zhang, A. J. Raines and R. A. Flowers, II, Org. Lett., 2003, **5**, 2363–2365.
- 11 (a) P. Jacob, III, P. S. Callery, A. T. Shulgin and N. Castagnoli, Jr, J. Org. Chem., 1976, 41, 3627–3629; (b) W. Williams, X. Sun and D. Jebaratnam, J. Org. Chem., 1997, 62, 4364–4369.
- 12 (a) B. S. Joshi, Q. Jiang, T. Rho and S. W. Pettetier, J. Org. Chem., 1994, 59, 8220–8232.